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One of the primary uses of GNSS 
systems such as GPS is to help 
people navigate as they travel 
about the Earth. As with celes-

tial navigation, GNSS enables us to find 
our position in unknown territories. 

With suitable means of communi-
cations, GNSS functionality can also be 
extended to track people. Combining 
tracking techniques with geographical 

maps creates the possibility of providing 
guidance information to assist people in 
their movements, as is widely done for 
car navigation and safety-critical appli-
cations in support of aircraft, trains, and 
marine vessels. 

In contrast to motorized vehicles, 
however, a large part of pedestrian 
movement takes place indoors or in 
light indoor environments. (These 

environments describe areas where the 
surrounding construction/vegetation 
block GNSS satellite signals to a greater 
or lesser extent. Urban canyons, sport 
stadiums, or a building entrance made 
of glass illustrate light indoors.) 

For example, in the course of a sin-
gle day a mobile maintenance worker 
receives new service requests and vis-
its the associated area with his car. The 
worker spends the major part of his day 
repairing hardware inside buildings 
where he often needs navigation data in 
an unfamiliar environment. Moreover, 
he has an additional interest in any 
safety improvement that arises from his 
ability to navigate and be tracked on his 
work sites.

In the outdoors, where there is a clear 
line of sight to the satellites, GNSS tech-
nology is able to provide location with 
good accuracy and continuity of service. 
However, indoor and light indoor envi-
ronments are quite challenging for satel-

Pedestrian 
  navigation

Exploration of hybrid inertial/GPS systems to provide 
continuous positioning through varying environments 
represents a growing field of interest to researchers. In 
particular, first responders and public safety professional 
would like to see robust systems that can operate indoors. 
This article describes work under way to develop a pedestrian 
navigation system based on inertial sensors and an assisted 
GNSS receiver. Special attention is paid to efforts being made 
in “gait analysis” to fine-tune the behavior of the inertial 
sensors as well as the stochastic models used in the system.

lite positioning and alternate navigation 
methods need to be sought that better 
suit these scenarios. The use of assisted-
GPS (AGPS) and inertial navigation sys-
tems (INS) can be considered as two of 
these alternate methods.

AGPS techniques use data dissemi-
nated by a telecommunication channel 
to a GPS receiver in order to improve the 
receiver’s sensitivity, reduce its time-to-
fix, and minimize the complexity of its 
design. The techniques typically involve 
a mobile phone able to acquire GPS sig-
nals, a cellular network, and an assis-
tance data server. 

AGPS enlarges the working area of a 
stand-alone GPS receiver to urban can-
yons or even indoors, where large sig-
nal attenuation and degradation effects  
worsen receiver performance. However 
the recent success of AGPS must not hide 
its technical limitations. In these chal-
lenging environments, signal strength 
might be too low even for AGPS. 

Even with sufficient signal strength, 

a high probability of acquiring only 
reflected (multipath) or cross-correlation 
signals introduces significant errors into 
the GPS measurements. Such situations 
highlight the need for complementary 
technology for reliable indoor naviga-
tion or tracking.. This article describes 

development of a pedestrian navigation 
system based on inertial sensors and an 
assisted GNSS receiver, using a loosely 
coupled scheme.

Inertial	MEMS
Inertial sensors used in pedestrian 
navigation typically use micro-electro-
mechanical system (MEMS) designs. 
MEMS result from the integration of 

mechanical elements on a common sili-
con substrate through micro-fabrication 
technology. They were not specifically 
developed for positioning, but they offer 
great possibilities for indoor and outdoor 
navigation in an autonomous and inde-
pendent manner. 

One of the first localization pro-
cesses, largely based on step detection 
and identification algorithms, was 
developed at the Ecole Polytechnique 
Fédérale de Lausanne (EPFL). (See the 
article by Quentin Ladetto cited in the 
Additional Resources section at the end 
of this article.). Pedestrian navigation 
based on MEMS sensors is affected by 
large amounts of drift and noise, typical 
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MEMS-based	algorithms	provide	only	relative	data	
from	the	previous	position	solution	to	the	current	one.	
We	need	to	use	absolute	positioning	data,	such	as	AGPS,	
to	relocate	or	reinitialize	the	MEMS-based	walking	path	
in	an	absolute	geographical	reference	frame.

hybridization of memS  
   and assisted GPS for
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of these sensors. These factors introduce 
errors into the estimation of displace-
ment and azimuth. 

We can reduce the effect of these 
errors by exploiting the biomechani-
cal and physical characteristics of the 
human stride, but also by hybridizing 
MEMS information with absolute posi-
tion information provided from other 
sources. The need for hybridization is 
also dictated by the fact that MEMS-
based algorithms provide only relative 
data from the previous position solution 
to the current one. We need to use abso-
lute positioning data, such as AGPS, to 
relocate or reinitialize the MEMS-based 
walking path in an absolute geographi-
cal reference frame.

The coupling of different navigation 
systems is an efficient way to improve 
positioning performances. The tech-
nique consists of combining measure-
ments from complementary navigation 
devices to yield a hybridized system 
with increased accuracy, availability, 
and robustness. Pedestrian navigation 
based on MEMS and AGPS offer non-
correlated complementary features that 
present them themselves as good candi-
dates for a hybridization scheme. 

This coupling scheme has been stud-
ied mainly in transition phases from out-
doors to indoors and the opposite. We 
can also consider it in a broader sense 
as a hybridization algorithm of MEMS-
based positioning combined with data 
from any absolute positioning system.

The research presented in this arti-
cle has been mainly carried out in the 
framework of the European project 
LIAISON (LocatIon bAsed servIceS for 
the enhancement of the wOrking envi-
ronment) in which EPFL participates. 
The global objective of this research is to 
cope with the kind of positioning errors 
described previously and to improve 
pedestrian navigation solutions mainly 
for emergency interventions. 

LIAISON intends to facilitate the 
work of isolated workers, such as fire-
fighters or taxi drivers, by providing 
them a mobile location device. The 
results of LIAISON will help forward the 
entry of Europe in the regulations such 
as the E112 standard. The project, which 

is coordinated by Alcatel Alenia Space, 
officially began in September 2004 with 
a planned duration of 42 months.

MEMS-Based	Algorithm	
MEMS sensors, such as accelerometers, 
gyroscopes, magnetometers, and barom-
eters, are regularly used to quantify the 
displacements of a subject using integra-
tion or pattern-recognition techniques. 

Such techniques often rely on estima-
tion models, for example, of step length 
or horizontal speed, which are primarily 
estimated in calibration phases. During 
calibration the person walks at a normal 
speed along a specific footpath with GPS 
fixed ambiguity position available to 
create an estimation model of a person’s 
particular walking style. 

The use of estimation models, how-
ever, limits our ability to follow the cur-
rent stochastic behavior of a pedestrian. 
The calibration phase uses models that 
only estimate the displacement based on 
fixed values but don’t measure and com-
pute the real displacement. This poses a 
problem if the walking cadence changes, 
for example.

To cope with the complexity result-
ing from the entire freedom of move-
ment of a subject, we developed a novel 
approach to pedestrian navigation. This 
included design of a MEMS-based algo-
rithm to help characterize the human 
motion involved in walking.

Characterization of a worker’s physi-
cal activity is a key element in the evalu-
ation of his safety condition, particularly 
in the context of dangerous working sce-
narios. For that purpose, we employed 
a distributed architecture of the MEMS 
sensors, illustrated in figure 1. This 
approach, described in the article by A. 
Paraschiv-Ionescu et al listed in Addi-
tional Resources, enables the analysis 
in real time of a worker’s posture and 
movement. 

Posture detection assesses basic 
activities such as sitting, standing, and 
lying. Detection of a possible emer-
gency is accomplished by analyzing the 
posture and mobility of a person being 
monitored. For example, a worker in the 
same posture motionless for a duration 
of at least 90 seconds might indicate an 
emergency situation. 

The inertial sensors, placed on the 
pedestrian’s trunk and thigh, provide the 
data for posture analysis and orientation 
determination. The accelerometers and 
the gyroscopes placed on the shank are 
used in gait analysis. 

At the end of each gait cycle, the dis-
tance travelled by a subject is calculated. 
The step length is computed from the 
angular rotation (α) of the shank fixed 
at a specific instant of the walking cycle 
using the following trigonometric rela-
tion:

The MEMS-based algorithm esti-
mates the length of the pedestrian’s 
leg value L assuming that it relates to 
the height of a person multiplied by a 
scale factor resulting from physiologi-
cal statistical figures. MEMS hybridiza-
tion with AGPS enables a more accu-
rate determination of the leg length. A 
walker’s step length is described as the 
MEMS-based algorithm’s output affect-
ed by a scale factor (λ) in the hybridiza-
tion algorithm. 

The MEMS-based algorithm pro-
vides the step length only at the end 
of a walking cycle that lasts between 1 
and 2.5 seconds and occurs asynchro-
nously. In this context, it is difficult to 
consider the step length directly in the 
hybridization algorithm. The MEMS-
based algorithm can also generate an 
instantaneous velocity figure for the 
pedestrian. The step length (s) is func-
tion of the horizontal speed (v), the gait 
cycle duration (Δt) and the slope of the 
ground (γ).

Indoor and urban environments are 
generally constituted by flat ground. The 
slope of the ground can thus be ignored 
in the hybridization process and the 

prev ious equat ion 
becomes:

The introduction 
of the horizontal speed 
instead of  the step 
length in the state vec-
tor of the hybridization 
process offer advantag-
es. First, a pedestrian 
does not always walk 
at steady a pace. This 
is particularly true of 
public safety work-
ers such as firefight-
ers whose movements 
are irregular. There-
fore, the estimation of 
instantaneous values 
like the walking speed 
in meters per second 
offers more realistic 
and current tracking of 

a worker. Moreover, the AGPS receiver 
provides the horizontal speed and not 
the incremental distance travelled from 
the previous position. It can thus be used 
as a more accurate direct observation.

The MEMS-based positioning algo-
rithm estimates the pedestrian’s changes 
in altitude. The gait analysis algorithm 
detects whether a walker is climbing 
or descending stairs and outputs the 
amount, n, of upward or downward 
stairs. The height variation results in the 
product of this number by a fixed stair 
height equal to 0.20 m.

AGPS	measurements
In order to implement a standardized 
AGPS format, we selected the 3GPP 
Universal Geographical Area Descrip-
tion (UGAD) outlined in the publica-
tion by European Telecommunications 
Standards Institute (ETSI) cited in the 
Additional Resources. Launched in 1998, 
the 3rd Generation Partnership Project 
(3GPP) is a collaboration agreement 
designed to establish a globally appli-
cable third-generation mobile phone 
(GSM, UMTS) system specification and 
thus to define standards in telecommu-
nication formats. 

This 3GPP UGAD technical specifi-
cation describes the content of the geo-
graphical area, including the type and 
encoding process of data. Although the 
use of this format offers the advantage 
of working with a common standard, it 
introduces some constraints when deal-
ing with hybrid systems such as ours.

figure 2 depicts the coding of the 
format and information elements of 
the 3GPP location message used for the 
AGPS data and contains the following 
elements:
• the position in WGS84 geographical 

coordinates with a corresponding 
position uncertainty ellipse

• the horizontal speed with the associ-
ated uncertainty

• the bearing
• the GPS time of week
• the time to fix (TTF) position

The typical encoding resolution of 
the geographical position is lower than 
two meters in the east direction and 
lower than one meter in the northing. 
This limitation in AGPS position accu-
racy is in the range of that for low-cost 
GNSS receivers commonly used for 
AGPS. Consequently, no major effect 
is expected on the AGPS/MEMS inte-
gration scheme. However, the use of 
the 3GPP format for other indoor posi-
tioning techniques, such as WiFi or 
Bluetooth, can induce a loss of the posi-
tioning accuracy. The accuracy of these 
indoor techniques is often better than 
what the encoding format can provide.

velocity. The format provides the 
horizontal speed and the bearing in 
terms of the direction of the horizon-
tal velocity component taken clockwise 
from north. 

The AGPS horizontal velocity is 
derived from the Doppler frequency 
shift of the GPS carrier wave. As long as 
the satellite velocity is precisely known, 
the Doppler effect enables computa-
tion with a high accuracy of the ground 
velocity of the pedestrian. The satel-
lite velocity predicted by the broadcast 
ephemeris in the navigation message is 
sufficiently accurate to achieve accura-
cies in the order of several centimeters 
per second. (For more discussion, see the 
article by L. Serrano et al in Additional 
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Resources.) Furthermore, the noise level 
of Doppler-derived velocity is far less 
compared with the noise level of posi-
tion-derived velocity. 

Common	time. Time synchroniza-
tion is one of the major issues in the 
development of an inertial/AGPS cou-
pling scheme. The AGPS location data 
includes the GPS Time Of Week (TOW) 
in seconds received from the GPS satel-
lite broadcasts. A MEMS unit has its own 
clock. Therefore, a common time marker 
has to be defined between the MEMS and 
the AGPS observations. For the tests pre-
sented later, we used the dynamics of the 
pedestrian to synchronize the navigation 
data generated by the two technologies. 
Each trial starts with a period of stand-
ing motionless before walking.

AGPS position determination also 
provides the needed time to fix (TTF) 
the position. The AGPS computation can 
focus either on time to first fix (TTFF) 
performance or sensitivity. Because in 
urban and indoor environments the 
amount of available satellites in direct 
line of sight might be critical, sensitiv-
ity performances are important. On the 
other hand, decreasing the TTF ensures 
the provision of GPS positions in a short 
time span and allows hybridization with 
MEMS observations. TTF might be used 
to reject old AGPS positions in a real-
time hybridization process.

Hybridization	Process
figure 3 shows the extended Kalman fil-
ter (EKF) designed for the hybridization 
of MEMS and AGPS information. Being 
continuous and independent of the envi-
ronment configuration, the measure-
ments provided by the inertial module 
are used for the mechanization part of 
the filter and the AGPS measurements 
for the update of the filter.

The state vector of the EKF contains 
the following parameters: the North N 
and East E components of the pedestri-
an position, the horizontal velocity v, a 
scale factor λ affecting the MEMS-based 
velocity output and the MEMS-based 
heading perturbations δH.

The vertical component can be treat-
ed either as a state vector component 
computed simultaneously in the coupled 

scheme or in a separate process. As dis-
cussed previously, pedestrian altitude 
is not directly related to MEMS sensor 
observations integration but rather to 
the gait analysis. Therefore, the utiliza-
tion of height as a variable in the state 
vector is of less interest. A separate cou-
pling architecture processes the height 
component using the AGPS height 
observation as the true height. 

The case of a person changing floors 
using an elevator supports the approach 
of treating the height in a separate pro-
cess. In such a situation, MEMS observa-
tions cannot reflect the altitude change. 
Using the AGPS positions as measure-
ments in the filter would deteriorate the 
output and affect the MEMS-based error 
estimations. The risk arises from inter-
pretation of the change in the altitude as 
an error in the gait analysis, whereas the 
person was just standing in the lift.

The pedestrian trajectory is described 
by the following classical mechanism:

This system of equations is non-lin-
ear with respect to the system variables, 
which is why the EKF is used.

AGPS	Integrity	Monitoring
Signal attenuation indoors due to walls 
reduces the availability of AGPS posi-
tions, making it important to exploit 
all available AGPS measurements in 

the coupling scheme. However, GNSS 
receiver operation indoors is also strong-
ly affected by multipath, which decreases 
positioning accuracy. 

In order to constrain this problem 
and reject measurements in which the 
uncertainty of the positioning accu-
racy is too large, the modelling of the 
measurement error covariance matrix 
in the Kalman filter uses the incoming 
position uncertainty from AGPS mea-
surements. 

However, the reliability of the posi-
tioning accuracy uncertainty provided 
by the AGPS receiver is also a concern. 
To assess this aspect, we consider the 
physical constraints of the pedestrian 
walk, the predictive capability of the 
MEMS-based algorithm, and study the 
innovation of the Kalman filter. 

The specifics of human movements in 
walking can assist the adaptive manner 
of addressing the integrity monitoring 
of AGPS measurements, which enables 
the system to reject bad measurements. 
MEMS sensors record the changes in the 
cadence of walking that induce physical 
effects. The AGPS variations in time 
should be in line with the smooth con-
tinuous changes recorded by the inertial 
sensors. 

The positioning accuracy of the 
MEMS system decreases as a function 
of the travelled distance. A five percent 
average drift over the distance one walks 
has been observed. Experimental results 

estimate the velocity of a pedestrian at 
between 0.8 and 1.2 meter per second. 
A dynamic threshold (τ), resulting from 
previous data and the time span between 
two AGPS updates, can be computed to 
test the innovation sequence.

where tAGPS,k+i is the AGPS position 
update associated with time (k+i), tAGPS,k 
is the previous AGPS position update 
associated with time k, and v is the 
MEMS-based estimation of the pedes-
trian horizontal walking speed.

Adaptive	Measurement	
Covariance	Matrix	
Indoors and in light indoor environ-
ments, AGPS positioning accuracy may 
vary from several meters up to several 
thousands of meters. A well-modelled 
measurement error covariance matrix is 
important to ensure good performances 
from the Kalman filter. 

Creating this matrix is a critical part 
of the hybridization scheme. Each new 
AGPS position provided is associated 
with a position uncertainty, which can 
be used in an adaptive manner in the 
filter. The semi-major axis uncertainty, 

the semi-minor axis uncertainty, the 
semi-major axis orientation, and the 
confidence level are used to compute 
variances associated with easting and 
northing coordinates. 

Horizontal	speed	uncertainty. We have 
developed an additional enhancement 
to the adaptive treatment of the mea-
surement covariance matrix based on 
the uncertainty of the AGPS horizontal 
velocity. The AGPS horizontal velocity 
varies with the quality of the AGPS mea-

surement, which in turn relates directly 
to the surrounding obstacles and the sig-
nal to noise ratio for each tracked GNSS 
satellite.

Considering the fact that in our case 
the AGPS horizontal velocity results 

directly from the Doppler shift of the 
GPS carrier wave, the reliability of the 
horizontal velocity estimate is expected 
to be better than the one provided by 
the position coordinates themselves. 
This also depends on any prefiltering 
that might be done to the AGPS results 
before being available in the 3GPP for-
mat for the coupling scheme.

Because we expect a higher level of 
confidence in the size of the uncertain-
ty in the AGPS horizontal velocity, the 

the	specifics	of	human	movements	in	walking	can	
assist	the	adaptive	manner	of	addressing	the	integrity	
monitoring	of	AGPS	measurements,	which	enables	the	
system	to	reject	bad	measurements.
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observation of the behavior of this data 
over time allows the adaptation of the 
measurement covariance matrix. This is 
done to adjust overly optimistic uncer-
tainties of the accuracy of the AGPS 
geographical coordinates. A function 
— for example, an exponential func-
tion — decreasing the weight of the mea-
surement covariance matrix associated 
with the AGPS measurement is applied 
to cope with the weakness of the uncer-
tainty integrity.

This scheme has been developed to 
cope with the specific behavior observed 
in the GPS receiver used in our pedes-
trian navigation system. This low-cost 
receiver was used for testing purposes 
in the EPFL. This solution cannot easily 
be applied to any AGPS module.

Stochastic	error	models	in	outdoors	and	
indoors. The horizontal velocity can be 
statistically modelled in different man-
ners. We will discuss two stochastic mod-
els considered for the prediction equation 
and the error modelling: the random 
walk and the first-order Gauss Markov.

The random walk model yields a 
constant number for all times, but the 
values are given by a random variable. If 
the discrete random walk process is used 
to model the horizontal walking speed, 
it can be described as the average speed a 
navigation system user has walked from 
a starting point with the addition of a 
random horizontal velocity component 
at every step. 

In a first-order Gauss-Markov pro-

cess, the current 
value is correlated 
with the previous 
epoch value at some 
extent specified by a 
degree of freedom 
with added Gaussian 
noise. In fact, a first-
order order Gauss-
Markov model is 
obtained by passing 
white noise through 
a low pass filter. The 
initial condition is 
chosen to make the 
process stationary. 
The autocorrela-
tion function of the 

Gauss-Markov process is an exponential 
decreasing function. This means that the 
values of the Gauss Markov sequence are 
less correlated the further apart in time 
they are.

Stochastic	Models
The coupling of AGPS with MEMS 
enables correction of the errors that 
affect the inertial sensors over time. 
However, another expected enhance-
ment of interest from this hybridiza-
tion is to get more reliable and accurate 
pedestrian navigation data in transition 
phases from outdoors to indoors or vice 
versa. In these transitions, the hybridiza-
tion filter tries to identify AGPS outliers 
to reject them. 

The integrity monitoring presented 
earlier accomplishes this task when the 
changes in successive AGPS positions 
are large and occur in the short term. 
But when changes in successive AGPS 
positions are small and happen over a 
long period, the integrity monitoring 
process will have difficulty identifying 
and rejecting bad measurements. 

This phenomenon can be expressed as 
a low drift or a small deviation from the 
true trajectory. In that case, the behavior 
expected from the Kalman filter is to run 
in prediction mode. This situation occurs 
when not enough satellites with a good 
signal-to-noise ratio can be tracked or if 
the multipath effect is strong. 

In the prediction phase, the math-
ematical discrete equations that prop-

agate the scale factor affecting the 
MEMS-based horizontal velocity can 
be written, with W(tk) a Gaussian white 
noise, as:
•  for the ran-

dom walk
•  for 

the first-order Gauss-Markov pro-
cess, with 1/β the constant time
In the prediction phase, with the use 

of a first-order Gauss Markov process 
model for the horizontal velocity scale 
factor, the value of the latter decreases 
towards zero during a short time. Con-
sequently, the horizontal velocity also 
converges to zero. The physical inter-
pretation of that convergence is that the 
pedestrian is stationary, but in reality the 
pedestrian is still moving. In this case, 
the filter is just running in the prediction 
phase only and is showing the position 
as being at the same place.

If the horizontal velocity scale fac-
tor is modelled with a random walk, its 
value remains constant. This stationary 
behavior is interpreted as a pedestrian 
walking with a constant speed. There-
fore, the use of a random walk process in 
the transition phases or indoors is more 
appropriate for the INS/AGPS coupling 
scheme. figure 4 illustrates the behaviors 
of both stochastic processes.

On the contrary, when good AGPS 
measurements are available, the use of a 
Gauss Markov process performs better. 
The stochastic process reflects well the 
physiological parameters of the walk. 
A pedestrian usually walks at a smooth 
pace. Even when he desires route guid-
ance, he will first examine his surround-
ings to find an indication and then slow 
down. Using a stochastic process that 
implies a correlation between successive 
times remains meaningful.

Field	trials	of	AGPS/MEMS
The pedestrian navigation system, com-
prised of the MEMS and AGPS parts, 
has been tested on the EPFL campus 
in two different scenarios. For the first 
scenario, we chose an open-sky environ-
ment outdoors. This test shows the full 
functionality of the filtering. 

The second scenario corresponds 
to the typical route that a visitor is fol-

lowing while arriving at the EPFL and 
entering into the building. This scenario 
is associated with what was previously 
described as the transition between out-
doors and indoors and vice versa. The 
second scenario allows a more realistic 
assessment of the positioning technique 
performances. 

A person walking at steady pace was 
equipped with the following hardware 
carried in a backpack:
• Three inertial “boxes” distributed 

on the body as depicted in Figure 1. 
Each box is composed of a triad of 
orthogonal accelerometers, a triad 
of orthogonal magnetometers and a 
triad of orthogonal gyroscopes. 

• A 16-channel, single-frequency 
receiver and antenna. This receiver 
is a low-cost, mass-market receiver 
whose function can be extended to 
AGPS applications.

• A geodetic-quality, 20-channel dual-
frequency receiver connected to a 
separate antenna used to determine 
precisely the true walk of the pedes-
trian. This trajectory is used as the 
reference trajectory for the results 
discussed later.

• Both antennas mounted on the user’s 
head minimizing the offset between 
the reference trajectory and the 
hybridized footpath. (See figure 5).

• An electronic notebook to record the 
data from the MEMS module and 
the GPS receiver. Data acquisition 

software, developed 
by the authors, pre-
pared the recorded 
GPS data in the 3GPP 
format described ear-
lier.

Performance	
assessment
The reference trajec-
tory was postprocessed 
using differential GPS 
with fixed ambiguities. 
The average horizontal 
accuracy of the reference 
trajectory is one centi-
meter. For the parts of 
the trajectory where an 
ambiguities-fixed solu-
tion was unavailable, 
the geographical map 
of the campus was used. 
Orthophotos of the campus with a 15-
centimeter resolution have been geore-
ferenced and used as reference for the 
indoor and light indoor environments.

The MEMS and the AGPS modules 
are synchronized, but there is no time 
synchronization between the reference 
and the hybrid trajectories. Therefore, 
we used a time-independent technique 
that rebuilds the reference trajectory 
as a spline with curvilinear abscissa to 
assess the accuracy of the hybrid trajec-
tories. The final accuracy results from 
the minimum distances that separate 

the filtered trajectories from the con-
structed spline. 

The outdoors scenario was per-
formed six times. The average accuracy 
was 0.84 meters with a standard devia-
tion of 51 centimeters.

figure 6 depicts the second scenario, a 
370-meter course that was walked three 
times. The average duration to walk 
along the footpath is 5.5 minutes with 
1 minute indoors. The starting point is 
located in the south at the bottom of the 
figure image with the northerly walking 
direction is indicated by an arrow. The 

FIGURE 5  Cap mounting system

FIGURE 4  Comparison of stochastic error models
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indoor portion lies to the north of the 
yellow line. 

The three hybrid trajectories match 
with a good confidence level the true 
walked path drawn in red, at times over-
lapping one another so closely as to be 
indistinguishable in the figure. The aver-
age accuracy for this outdoor scenario is 
0.93 meters associated with a standard 
deviation of 0.99 meters.

The EKF operates well as the pedes-
trian moves from outdoors to light 
indoors. It handles the transition in 
a smooth manner that preserves the 
accuracy. 

As expected, accuracy decreases 
inside the building. When a person 
walks indoors, the filter relies only on 
the MEMS sensors that are affected by 
large drift and noise. The longer this 
period lasts, the larger is the deviation 
from the true trajectory. 

When the person exits the building 
and the AGPS measurement integrity is 
assessed, the filter is able to correct the 
accumulated deviation and converges 
back to the true footpath. This deviation 
is illustrated on figure 7. 

Conclusions
The extended Kalman filter and the 
enhancements presented earlier show 
interesting improvements for outdoors/
indoors transition scenarios, compared 
to existing loosely coupled schemes. The 
main achievements result in an improved 
accuracy and reliability. Thanks to the 
distributed MEMS sensors configura-
tion, the tracking of the movements of 
a person is also more precise. The filter 
is able to output accurate quasi-instan-

taneous data that 
are useful for safety 
applications. 

Being able to 
identify the time a 

person is entering a zone where AGPS 
data are not reliable remains a difficult 
task. The deterioration of AGPS is often 
correlated with surrounding obstacles. 
The provision of additional data that 
indicated if the pedestrian is still out-
doors or has just gone indoors could 
improve the” filter performances. 

Without thinking about more com-
plex techniques, such as match-map-
ping, for example, it certainly would 
be interesting to try to improve the 
hybridization process by incorporat-
ing data on the number of satellites 
tracked and their signal-to-noise ratio 
in addition to the existing 3GPP loca-
tion format.
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As	expected,	in	the	test	accuracy	
decreases	inside	the	building.	When	a	
person	walks	indoors,	the	filter	relies	
only	on	the	MEMS	sensors	that	are	
affected	by	large	drift	and	noise.	the	
longer	this	period	lasts,	the	larger	is	
the	deviation	from	the	true	trajectory.
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